
Time-Constrained
Flooding
A. Mehta and E. Wagner

Time-Constrained Flooding: Problem
Definition

●  Devise an algorithm that
provides a subgraph
containing all possible paths
from source to destination
with total edge latency at
most L, whose nodes are
all on some simple path
from source to destination.

An example input.

Two-Step Algorithm
●  Phase 1: Eliminate all edges that are not on paths within

maximum total latency L.

●  Phase 2: Remove all nodes that are not on at least one simple
path from source to destination within the time constraint.

●  Why do we only care about nodes on simple paths?

○  A given node will only send packets once. If it receives the
same packet twice, it will not resend it. Since non-simple
paths reuse a node, they do not add reliability.

Algorithm - Phase 1

●  Step 1: Run Dijkstra’s
algorithm once from the
source and once from the
destination to get the
shortest distance to the
source (ds) and to the
destination (dd) for each
node in the graph.

Fig : After Step 1.

Algorithm - Phase 1
●  Step 2: For each edge e in the

graph check if the following
condition is true:

●  If so, the edge is included.
Otherwise, it is not.

Fig : Output after Step 2 for
Budget = 5.

Algorithm

●  Now we have all edges that
meet our time constraint.

●  However, these may include
cycles that do not increase
reliability.

Fig : Output after Steps 1 and 2
includes a cycle.

Algorithm - Phase 2

●  Step 1: Add a dummy node
(D) to the graph with zero-
latency edges to the source
and destination. Add all the
nodes in the graph except
the source and the
destination to a list of
nodes called list_eval.

Fig : Output after Steps 1 and 2
includes a cycle.

D

Algorithm - Phase 2

●  Step 2: For each node(n) in
list_eval, use Suurballe’s
algorithm to find 2 node-
disjoint paths whose total
latency is minimized from n to
d. 2 such paths may not exist.

●  If 2 node disjoint paths do not
exist, remove the node from the
final graph and continue from
Step 2. Otherwise go to Step 3. Fig : Step 2 for node 4.

D

Algorithm - Phase 2

●  Step 2: For each node(n) in
list_eval, use Suurballe’s
algorithm to find 2 node-
disjoint paths whose total
latency is minimized from n to
d. 2 such paths may not exist.

●  If 2 node disjoint paths do not
exist, remove the node from the
final graph and continue from
Step 2. Otherwise go to Step 3. Fig : Step 2 for node 2.

D

Algorithm - Phase 2

●  Step 3: Check if the total latency
of the paths obtained in Step 2,
which is necessarily minimal, is
within the time constraint.

●  If so, remove all the nodes on
either path from list_eval, as these
are all known to be on a valid
simple path from source to
destination. Otherwise, remove the
node from the final graph. Repeat
from Step 2 until list_eval is
empty.

Fig : Step 2 for node 2.

D

Algorithm - Phase 2

●  Step 3: Check if the total latency of
the paths obtained in Step 2, which
is necessarily minimal, is within the
time constraint.

●  If so, remove all the nodes on either
path from list_eval, as these are all
known to be on a valid simple path
from source to destination.
Otherwise, remove the node from
the final graph. Repeat from Step 2
until list_eval is empty. Fig : Final Output for Budget = 5.

Example Graph: Practical Topology

With source node 2,
destination node 4, and a
budget b = 34.75 ms, no
paths are possible.

Example Graph: Practical Topology

At b = 35 ms, a single path
appears.

Example Graph: Practical Topology

No further changes until b =
36 ms.

Example Graph: Practical Topology

At b = 36.25 ms.

Example Graph: Practical Topology

At b = 36.75 ms.

Example Graph: Practical Topology

At b = 37.25 ms.

Example Graph: Practical Topology

At b = 38 ms.

Example Graph: Practical Topology

At b = 38.5 ms.

Example Graph: Practical Topology

At b = 40.25 ms.

Example Graph: Practical Topology

At b = 41.25 ms.

Example Graph: Loop Graph

This graph will show the full
power of algorithm that
removes nodes only on non-
simple paths from the
source, node 1, to the
destination, node 3.

Example Graph: Loop Graph

The first path appears at b =
2.

Example Graph: Loop Graph

At b = 3.

Example Graph: Loop Graph

The first node removals
happen at b = 4. They are
shown in red. The
bottleneck at node 2
precludes the existence of 2
node-disjoint paths.

Example Graph: Loop Graph

An additional edge is within
the time constraint at b = 5,
but is removed due to the
same bottleneck.

Example Graph: Loop Graph

At b = 6, the edge between 4
and 3 is now within the
budget on the path 1-2-4-3,
so there is no longer a
bottleneck at node 2 for
node 4.

Example Graph: Loop Graph

At b = 7, the path 1-2-5-4-3
is now in the budget, so all
nodes are now on some
simple path from source to
destination within the
budget.

Demonstration: Subgraph Reachability

●  When increased latency
budget results in more
edges in the subgraph,
more nodes can fail without
breaking s-t reachability.

●  Small latency budget
increases can result in large
increases in the number of
edges within the time
constraint.

Live demo on practical network
topology from west coast to JHU.

Demonstration: Subgraph Reachability

Demonstration: Subgraph Reachability

b1 = 33.75 ms

b2 = 35.05 ms

b3 = 39.0 ms

b4 = 43.25 ms

Applications of Time-Constrained
Flooding
●  Using packets sent over time-constrained flooding

graphs, we can get an upper bound on reliability for a
given source, destination, and time budget.

●  The smallest latency for which a path is found with
this algorithm can be used to determine the minimum
bandwidth cost and the resulting reliability for a given
source and destination.

●  Thus for a given s-t pair, we can get a lower bound on
cost and latency and find the associated reliability,
and an upper bound on reliability at a given budget.

