Time-Constrained Flooding

A.Mehta and E. Wagner

Time-Constrained Flooding: Problem Definition

• Devise an algorithm that provides a subgraph containing all possible paths from source to destination with **total edge latency** at most *L*, whose **nodes** are all on some simple path from source to destination.

An example input.

Two-Step Algorithm

- **Phase 1:** Eliminate all edges that are not on paths within maximum total latency *L*.
- **Phase 2:** Remove all nodes that are not on at least one simple path from source to destination within the time constraint.
- Why do we only care about nodes on simple paths?
	- \circ A given node will only send packets once. If it receives the same packet twice, it will not resend it. Since non-simple paths reuse a node, they do not add reliability.

● **Step 1:** Run Dijkstra's algorithm once from the source and once from the destination to get the shortest distance to the source (d_s) and to the destination (d_d) for each node in the graph.

Fig : After Step 1.

● **Step 2**: For each edge *e* in the graph check if the following condition is true:

$$
d_s(e.\text{head}) + \text{latency}(e) + d_d(e.\text{tail}) \le L
$$

• If so, the edge is included. Otherwise, it is not.

Fig : Output after Step 2 for Budget $= 5$.

Algorithm

- Now we have all edges that meet our time constraint.
- However, these may include cycles that do not increase reliability.

Fig : Output after Steps 1 and 2 includes a cycle.

● **Step 1:** Add a dummy node (*D*) to the graph with zerolatency edges to the source and destination. Add all the nodes in the graph except the source and the destination to a list of nodes called *list_eval.*

Fig : Output after Steps 1 and 2 includes a cycle.

- **Step 2:** For each node*(n)* in *list_eval*, use Suurballe's algorithm to find 2 nodedisjoint paths whose total latency is minimized from *n* to *d.* 2 such paths may not exist.
- If 2 node disjoint paths do not exist, remove the node from the final graph and continue from **Step 2.** Otherwise go to Step 3. Fig : Step 2 for node 4.

- **Step 2:** For each node*(n)* in *list_eval*, use Suurballe's algorithm to find 2 nodedisjoint paths whose total latency is minimized from *n* to *d.* 2 such paths may not exist.
- If 2 node disjoint paths do not exist, remove the node from the final graph and continue from **Step 2.** Otherwise go to Step 3. Fig: Step 2 for node 2.

- **Step 3:** Check if the total latency of the paths obtained in **Step 2**, which is necessarily minimal, is within the time constraint.
- If so, remove all the nodes on either path from *list_eval*, as these are all known to be on a valid simple path from source to destination*.* Otherwise, remove the node from the final graph. Repeat from **Step 2** until *list_eval* is empty.

Fig : Step 2 for node 2.

- **Step 3:** Check if the total latency of the paths obtained in **Step 2**, which is necessarily minimal, is within the time constraint.
- If so, remove all the nodes on either path from *list_eval*, as these are all known to be on a valid simple path from source to destination*.* Otherwise, remove the node from the final graph. Repeat from **Step 2** until *list_eval* is empty. Fig : Final Output for Budget = 5.

With source node 2, destination node 4, and a budget *b* = 34.75 ms, no paths are possible.

At *b* = 35 ms, a single path appears.

No further changes until *b* = 36 ms.

At $b = 36.25$ ms.

At $b = 36.75$ ms.

At $b = 37.25$ ms.

At $b = 38$ ms.

At $b = 38.5$ ms.

At $b = 40.25$ ms.

At $b = 41.25$ ms.

This graph will show the full power of algorithm that removes nodes only on nonsimple paths from the source, node 1, to the destination, node 3.

The first path appears at *b* = 2.

At $b = 3$.

The first node removals happen at $b = 4$. They are shown in red. The bottleneck at node 2 precludes the existence of 2 node-disjoint paths.

An additional edge is within the time constraint at *b = 5*, but is removed due to the same bottleneck.

At $b = 6$, the edge between 4 and 3 is now within the budget on the path 1-2-4-3, so there is no longer a bottleneck at node 2 for node 4.

At *b* = 7, the path 1-2-5-4-3 is now in the budget, so all nodes are now on some simple path from source to destination within the budget.

Demonstration: Subgraph Reachability

- When increased latency budget results in more edges in the subgraph, more nodes can fail without breaking *s-t* reachability.
- Small latency budget increases can result in large increases in the number of edges within the time constraint.

Live demo on practical network topology from west coast to JHU.

Demonstration: Subgraph Reachability

Demonstration: Subgraph Reachability

 $b_1 = 33.75$ ms b_2 = 35.05 ms $b_3 = 39.0$ ms $b_4 = 43.25$ ms

Applications of Time-Constrained Flooding

- Using packets sent over time-constrained flooding graphs, we can get an upper bound on reliability for a given source, destination, and time budget.
- The smallest latency for which a path is found with this algorithm can be used to determine the minimum bandwidth cost and the resulting reliability for a given source and destination.
- Thus for a given *s-t* pair, we can get a **lower bound** on cost and latency and find the associated reliability, and an **upper bound** on reliability at a given budget.