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Time-Constrained Flooding: Problem 
Definition 

●  Devise an algorithm that 
provides a subgraph 
containing all possible paths 
from source to destination 
with total edge latency at 
most L,  whose nodes are 
all on some simple path 
from source to destination. 

An example input. 



Two-Step Algorithm 
●  Phase 1: Eliminate all edges that are not on paths within 

maximum total latency L. 

●  Phase 2: Remove all nodes that are not on at least one simple 
path from source to destination within the time constraint. 

●  Why do we only care about nodes on simple paths? 

○  A given node will only send packets once.  If it receives the 
same packet twice, it will not resend it.  Since non-simple 
paths reuse a node, they do not add reliability. 



Algorithm - Phase 1 

●  Step 1: Run Dijkstra’s 
algorithm once from the 
source and once from the 
destination to get the 
shortest distance to the 
source (ds) and to the 
destination (dd) for each 
node in the graph. 

Fig : After Step 1. 



Algorithm - Phase 1 
●  Step 2: For each edge e in the 

graph check if the following 
condition is true: 

 

   

●  If so, the edge is included.  
Otherwise, it is not. 

Fig : Output after Step 2 for 
Budget = 5. 



Algorithm 

●  Now we have all edges that 
meet our time constraint. 

●  However, these may include 
cycles that do not increase 
reliability. 

 
   

Fig : Output after Steps 1 and 2 
includes a cycle. 



Algorithm - Phase 2 

●  Step 1: Add a dummy node 
(D) to the graph with zero-
latency edges to the source 
and destination. Add all the 
nodes in the graph except 
the source and the 
destination to a list of 
nodes called list_eval. 

 
   

Fig : Output after Steps 1 and 2 
includes a cycle. 

D 



Algorithm - Phase 2 

●  Step 2: For each node(n) in 
list_eval, use Suurballe’s 
algorithm to find 2 node-
disjoint paths whose total 
latency is minimized from n to 
d. 2 such paths may not exist. 

●  If 2 node disjoint paths do not 
exist, remove the node from the 
final graph and continue from 
Step 2. Otherwise go to Step 3. Fig : Step 2 for node 4. 

D 
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Algorithm - Phase 2 

●  Step 3: Check if the total latency 
of the paths obtained in Step 2, 
which is necessarily minimal, is 
within the time constraint. 

●  If so, remove all the nodes on 
either path from list_eval, as these 
are all known to be on a valid 
simple path from source to 
destination. Otherwise, remove the 
node from the final graph. Repeat 
from Step 2 until list_eval is 
empty. 

Fig : Step 2 for node 2. 

D 



Algorithm - Phase 2 

●  Step 3: Check if the total latency of 
the paths obtained in Step 2, which 
is necessarily minimal, is within the 
time constraint. 

●  If so, remove all the nodes on either 
path from list_eval, as these are all 
known to be on a valid simple path 
from source to destination. 
Otherwise, remove the node from 
the final graph. Repeat from Step 2 
until list_eval is empty. Fig : Final Output for Budget = 5. 



Example Graph: Practical Topology 

With source node 2, 
destination node 4, and a 
budget b = 34.75 ms, no 
paths are possible. 

   



Example Graph: Practical Topology 

At b = 35 ms, a single path 
appears.  

   



Example Graph: Practical Topology 

No further changes until b = 
36 ms. 

   



Example Graph: Practical Topology 

At b = 36.25 ms. 

   



Example Graph: Practical Topology 

At b = 36.75 ms. 

   



Example Graph: Practical Topology 

At b = 37.25 ms. 

   



Example Graph: Practical Topology 

At b = 38 ms. 

   



Example Graph: Practical Topology 

At b = 38.5 ms. 

   



Example Graph: Practical Topology 

At b = 40.25 ms. 

   



Example Graph: Practical Topology 

At b = 41.25 ms. 

   



Example Graph: Loop Graph 

This graph will show the full 
power of algorithm that 
removes nodes only on non-
simple paths from the 
source, node 1, to  the 
destination, node 3. 

   



Example Graph: Loop Graph 

The first path appears at b = 
2. 

   



Example Graph: Loop Graph 

At b = 3. 

   



Example Graph: Loop Graph 

The first node removals 
happen at b = 4.  They are 
shown in red.  The 
bottleneck at node 2 
precludes the existence of 2 
node-disjoint paths. 

   



Example Graph: Loop Graph 

An additional edge is within 
the time constraint at b = 5, 
but is removed due to the 
same bottleneck. 

   



Example Graph: Loop Graph 

At b = 6, the edge between 4 
and 3 is now within the 
budget on the path 1-2-4-3, 
so there is no longer a 
bottleneck at node 2 for 
node 4. 

   



Example Graph: Loop Graph 

At b = 7, the path 1-2-5-4-3 
is now in the budget, so all 
nodes are now on some 
simple path from source to 
destination within the 
budget. 

   



Demonstration: Subgraph Reachability 

●  When increased latency 
budget results in more 
edges in the subgraph, 
more nodes can fail without 
breaking s-t reachability. 

●  Small latency budget 
increases can result in large 
increases in the number of 
edges within the time 
constraint. 

Live demo on practical network 
topology from west coast to JHU. 
   



Demonstration: Subgraph Reachability 



Demonstration: Subgraph Reachability 

b1 = 33.75 ms 

b2 = 35.05 ms 

b3 = 39.0 ms 

b4 = 43.25 ms 



Applications of Time-Constrained 
Flooding 
●  Using packets sent over time-constrained flooding 

graphs, we can get an upper bound on reliability for a 
given source, destination, and time budget. 

●  The smallest latency for which a path is found with 
this algorithm can be used to determine the minimum 
bandwidth cost and the resulting reliability for a given 
source and destination. 

●  Thus for a given s-t pair, we can get a lower bound on 
cost and latency and find the associated reliability, 
and an upper bound on reliability at a given budget. 

   


